Mechanisms of closure of cardiac sodium channels in rabbit ventricular myocytes: single-channel analysis.

نویسندگان

  • A O Grant
  • C F Starmer
چکیده

We have examined the kinetics of closure of sodium channels using single-channel recordings in cell-attached and excised membrane patches of rabbit ventricular myocytes. Sodium-channel closure was dependent on membrane potential. The closing rate initially decreased with depolarization. The rate then passed through a minimum and increased at strongly depolarized potentials. We attempted to determine the separate voltage dependence of the deactivation and inactivation rate constants using the method of Aldrich, Corey, and Stevens. In a majority of experiments, the method did not give internally consistent results. As an alternative approach, batrachotoxin was used to remove inactivation and determine the voltage dependence of deactivation rate. The deactivation rate decreased with depolarization. To account for the increase in the closing rate at strongly depolarized test potentials, one must postulate voltage dependence of inactivation. The ensemble average current relaxed with a time course that was usually best described by the sum of two exponentials. The larger of the two rate constants that described the relaxation was strongly voltage-dependent, increasing with depolarization. The larger rate constant may reflect voltage-dependent inactivation. We found evidence of two possible mechanisms for the slow component of relaxation: 1) cardiac sodium channels may open repetitively during a given depolarizing epoch, and 2) channels may return from the inactivated state with low probability and burst for as much as 200 msec with open times that are longer than those during usual gating. The slow component appears to be more prominent in cardiac muscle than in nerve and may play an important role in the control of the action potential duration and the inotropic state of the heart.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unitary sodium channels in isolated cardiac myocytes of rabbit.

Transmembrane ionic movements are thought to occur through special membrane areas or channels. Until recently, it has not been possible to study the properties of individual ionic channels, directly. We have used the extracellular patch clamp technique to resolve unitary sodium channels in enzyme-dissociated rabbit ventricular myocytes. Depolarizing voltage clamp steps elicited rectangular inwa...

متن کامل

Temperature-dependent model of human cardiac sodium channel

Cardiac sodium channels are integral membrane proteins whose structure is not known at atomic level yet and their molecular kinetics is still being studied through mathematical modeling. This study has focused on adapting an existing model of cardiac Na channel to analyze molecular kinetics of channels at 9-37°C. Irvine et al developed a Markov model for Na channel using Neuronal Network Model ...

متن کامل

Temperature-dependent model of human cardiac sodium channel

Cardiac sodium channels are integral membrane proteins whose structure is not known at atomic level yet and their molecular kinetics is still being studied through mathematical modeling. This study has focused on adapting an existing model of cardiac Na channel to analyze molecular kinetics of channels at 9-37°C. Irvine et al developed a Markov model for Na channel using Neuronal Network Model ...

متن کامل

Dihydropyridine receptors are primarily functional L-type calcium channels in rabbit ventricular myocytes.

We measured [3H]PN200-110 binding and patch-clamp currents in rabbit ventricular myocytes to determine if there is a disparity between the density of dihydropyridine-specific receptors and functional L-type calcium channels, as has been reported for skeletal muscle. The dihydropyridine receptor density was 74.7 +/- 4.2 fmol/mg protein (mean +/- SEM, Kd = 1.73 +/- 0.29 nM, n = 6) in ventricular ...

متن کامل

Enhancement of Rabbit Cardiac Sodium Channels by /3-Adrenergic Stimulation

Voltage-dependent sodium channels from a variety of tissues are known to be phosphorylated by the cAMP-dependent protein kinase, protein kinase A. However, the functional significance of sodium channel phosphorylation is not clearly understood. Using whole-cell voltage-clamp techniques, we show that sodium currents (INaS) in rabbit cardiac myocytes are enhanced by isoproterenol (ISO). This enha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 60 6  شماره 

صفحات  -

تاریخ انتشار 1987